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Channel-facilitated membrane transport: Average lifetimes in the channel
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The transport of many solutes across biological membranes happens with the help of specialized
proteins that form water-filled channels traversing the membranes. Recent experimental and
theoretical work demonstrates that solute translocation can be facilitated by attractive interactions
between the channel and penetrating particle. Here we consider an important aspect of
channel-facilitated passive transport, the average lifetimes in the channel for those particles that
traverse the channel and those that return, as well as the total average lifetime of the particle in the
channel. Exact expressions for the average lifetimes are derived in the framework of a
one-dimensional diffusion model. The validity of our one-dimensional analysis is verified by good
agreement of the theoretical predictions with the average lifetimes found in three-dimensional
Brownian dynamics simulations.
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I. INTRODUCTION

It is well documented now that membrane transport
metabolites and other solutes larger than monoatomic ion
assisted and regulated by specialized membrane pro
forming water-filled channels. The basic mechanisms of
channel-facilitated transport are interesting from both pra
cal and conceptual points of view. As a specific example,
mention recent studies of antibiotic transport through ba
rial channels1,2 where progress in understanding of the p
meation mechanism may lead to the development of m
efficient drugs. Conceptually, although the constructive r
of attractive interactions between permeating particles
the channel has been appreciated for many years,3–5 a com-
prehensive theory capable of offering a clear understand
and a reliable quantitative description of channel-facilita
metabolite transport is still to be developed.

A particle that enters the channel either returns and
capes on the same side of the membrane where it ente
traverses the channel and escapes on the opposite side
membrane. Key quantities that characterize this process
translocation and return probabilities and average lifetime
the channel of translocating and returning particles, as w
as the total average lifetime of the particle in the chann
These quantities are building blocks of the theory of
channel-facilitated transport.

General expressions for the translocation and ret

a!Author to whom correspondence should be addressed. Permanen
dress: Karpov Institute of Physical Chemistry, Vorontsovo Pole 10, M
cow, K-64, 103064 Russia. Fax:~301! 402-9462. Electronic mail:
bezrukov@helix.nih.gov
394

Downloaded 31 Jul 2003 to 128.231.88.2. Redistribution subject to AIP
f
is

ins
is
i-
e
-

-
re
e
d

g
d

s-
or
the
re

in
ll
l.
e

n

probabilities are found in our previous study.6 In the present
paper we derive expressions for the average lifetimes in
channel for translocating and returning particles, which w
be called average return and translocation times, res
tively. These lifetimes are conditional because they are
culated for the two subsets of all possible realizations of
random process. The total average lifetime of the particle
the channel is obtained as the weighted sum of the co
tional lifetimes, in which the weight factors are the trans
cation and return probabilities derived in Ref. 6.

To illustrate some qualitative features of the average l
times predicted by the general theory, we study a special c
in which a symmetric square-well potential occupies so
part of the channel. We find that both the total average l
time in the channel and the average return time are mo
tonically increasing functions of the well depth and leng
Such a behavior agrees with general intuitive ideas. In c
trast, the dependence of the average translocation time o
well length is somewhat counterintuitive. This time increas
with the length when the length is small, reaches a maxim
when the well occupies half of the channel, and then start
decrease. Concerning the dependence on the well depth
average translocation time monotonically increases w
depth. The deeper the well, the more pronounced is turno
behavior of the translocation time.

Another surprising result is that the average translo
tion time does not depend on the direction in which the p
ticle translocates. This statement is true for the arbitrary
pendence of the particle potential energy in the channel
shown in Fig. 1. Specifically, this includes the case of a fin
difference in the potential energy between the channel e
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-
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DUÞ0 in Fig. 1, where the particle has to go either up
down the energy gradient depending on the direction of
translocation.

The outline of the paper is as follows. After the model
formulated in the following section, we derive a general s
lutions in Sec. III. The case of the symmetric square-w
potential is discussed in detail in Sec. IV. Three-dimensio
Brownian dynamics simulations performed for this poten
to test our one-dimensional theory are also reported in
section. The simulation results agree well with the theoret
predictions. Section V contains a brief summary and c
cluding remarks. In the Appendix we demonstrate that
translocation time does not depend on the direction of tra
location in the framework of a simple two-site model of t
channel.

II. MODEL AND DEFINITIONS

Consider a particle that enters a cylindrical membra
channel. The particle either traverses the channel or esc
on the same side of the membrane, where it has entered
goal is to calculate the average time that the particle spe
in the channel in both cases as well as its total average
time in the channel.

Our derivation is based on an approximate treatmen
the particle motion in the channel as one-dimensional di
sion along the channel axis. This model describes the in
action of the particle with the channel in terms of the pote
tial of mean forceU(x), which acts on the particle at th
point x ~Fig. 1!, and position-dependent diffusion coefficie
D(x). The propagator or Green functionG(x,tux0), which is
the probability density to find the particle at pointx at timet
on condition that the particle was atx0 at t50, satisfies the
diffusion ~Smoluchowski! equation

]G

]t
5

]

]x H D~x!e2bU~x!
]

]x
@GebU~x!#J , ~2.1!

FIG. 1. Schematic view of the particle potential energyU(x) in the mem-
brane channel.
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whereb5(kBT)21, and kB and T are the Boltzmann con
stant and absolute temperature. The propagator satisfie
initial condition

G~x,0ux0!5d~x2x0!. ~2.2!

Radiation boundary conditions imposed at the end pointx
50, x5L describe the escape of the particle from the ch
nel:

]

]x
@GebU~x!#U

x50

5
k0

D~0!
ebU~0!G~0,tux0!,

~2.3!

2
]

]x
@GebU~x!#U

x5L

5
kL

D~L !
ebU~L !G~L,tux0!,

where the rate constantsk0 andkL characterize the efficiency
of the escape. Two limiting cases ofk5` and k50 corre-
spond to perfectly absorbing and reflecting end points,
spectively. In what followsk0 ,kLÞ0,̀ because there is no
translocation in both cases.

Escape from the channel is described by the probab
fluxes through the end points

f 0~ tux0!5k0G~0,tux0!, f L~ tux0!5kLG~L,tux0!. ~2.4!

Their sum is the probability density for the lifetime in th
channel of the particle initially atx0 :

w~ tux0!5 f 0~ tux0!1 f L~ tux0!. ~2.5!

The total probabilities of escape through the left and rig
end points, denoted byP0(x0) andPL(x0), are given by

P0~x0!5E
0

`

f 0~ tux0!dt, PL~x0!5E
0

`

f L~ tux0!dt.

~2.6!

One can see that

P0~x0!1PL~x0!5E
0

`

w~ tux0!dt51. ~2.7!

The probability densities for the lifetimes in the chann
on condition that the particle, initially atx0 , escape through
the end points atx50 or x5L are, respectively, defined by

w0~ tux0!5
1

P0~x0!
f 0~ tux0!,

~2.8!

wL~ tux0!5
1

PL~x0!
f L~ tux0!.

The conditional average lifetimest̄ 0(x0) and t̄ L(x0) are
given by

t̄ 0~x0!5E
0

`

tw0~ tux0!dt5
1

P0~x0!
E

0

`

t f 0~ tux0!dt

5
k0

P0~x0!
E

0

`

tG~0,tux0!dt,
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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t̄ L~x0!5E
0

`

twL~ tux0!dt

5
1

PL~x0!
E

0

`

t f L~ tux0!dt

5
kL

PL~x0!
E

0

`

tG~L,tux0!dt.

~2.9!

Using the definitions in Eqs.~2.5! and~2.8!, one can see tha

w~ tux0!5w0~ tux0!P0~x0!1wL~ tux0!PL~x0!. ~2.10!

As a consequence, the average particle lifetime in the ch
nel is

t̄ ~x0!5E
0

`

tw~ tux0!dt5 t̄ 0~x0!P0~x0!1 t̄ L~x0!PL~x0!.

~2.11!

The average translocation and return times, which
the average lifetimes in the channel of translocating~tr! and
returning ~r! particles that enter the channel atx050 and
x05L, are denoted byt̄ tr(0), t̄ r(0), t̄ tr(L), and t̄ r(L), re-
spectively. These times can be written in terms of the con
tional average lifetimest̄ 0(x0) and t̄ L(x0) introduced in Eq.
~2.9! as follows:

t̄ tr~0!5 t̄ L~0!, t̄ r~0!5 t̄ 0~0!,
~2.12!

t̄ tr~L !5 t̄ 0~L !, t̄ r~L !5 t̄ L~L !.

In what follows we derive expressions fort̄ 0(x0) and t̄ L(x0).
The relations in Eqs.~2.12! are then used to find the averag
return and translocation times.

The functionsP0(x0) and PL(x0) give the probabilities
of two possible outcomes of the stochastic process. They
called ‘‘splitting probabilities.’’7–9 Associated conditiona
average lifetimest̄ 0(x0) and t̄ L(x0) are similar to, but not
identical with, the conditional mean first-passage times d
cussed in detail by Redner in Ref. 9. The difference betw
these times lies in the boundary conditions at the ends of
interval. To find conditional mean first-passage times one
to impose absorbing boundary conditions. Conditional av
age lifetimest̄ 0(x0) and t̄ L(x0) will be derived for radiation
boundary conditions. This difference in the boundary con
tions is important because a diffusing particle cannot cr
an absorbing boundary and, hence, cannot enter the cha

III. SOLUTION

It is convenient to introduce the auxiliary timest0(x0)
andtL(x0) defined by

t0~x0!5E
0

`

t f 0~ tux0!dt5k0E
0

`

tG~0,tux0!dt,

tL~x0!5E
0

`

t f L~ tux0!dt5kLE
0

`

tG~L,tux0!dt, ~3.1!
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which are functions of the particle initial position. Thes
times satisfy the equation that can be derived from the ba
ward equation for the propagator considered as a functio
x0 :

]G

]t
5ebU~x0!

]

]x0
H D~x0!e2bU~x0!

]G

]x0
J . ~3.2!

The initial condition is given in Eq.~2.2!, and the boundary
conditions are

]G

]x0
U

x050

5
k0

D~0!
G~x,tu0!,

~3.3!

2
]G

]x0
U

x05L

5
kL

D~L !
G~x,tuL !.

Using Eqs.~3.1!–~3.3!, one can check thatt0(x0) and
tL(x0) satisfy

ebU~x0!
d

dx0
H D~x0!e2bU~x0!

dt0,L~x0!

dx0
J 52P0,L~x0!,

~3.4!

with the boundary conditions

dt0,L~x0!

dx0
U

x050

5
k0

D~0!
t0,L~0!,

~3.5!

2
dt0,L~x0!

dx0
U

x05L

5
kL

D~L !
t0,L~L !.

The probabilitiesP0(x0) and PL(x0) are derived in Ref. 6
and are given by

P0~x0!5

k0F11kLe2bDUE
x0

L ebU~y!

D~y!
dyG

k01kLe2bDU1k0kLe2bDuE
0

L ebU~y!

D~y!
dy

,

~3.6!

PL~x0!5

kLe2bDUF11k0E
0

x0 ebU~y!

D~y!
dyG

k01kLe2bDU1k0kLe2bDUE
0

L ebU~y!

D~y!
dy

.

Here we have takenU(0)50 and introduced the notatio
DU5U(L) for the difference in the potential energies at t
channel ends~Fig. 1!.

Solving Eq.~3.4!, one can findt0(x0) and tL(x0) and
eventually the average return and translocation times defi
in Eq. ~2.12!. Surprisingly, we find that the average transl
cation times in both directions coincide. For this reason
have introduced a unified notation for the average translo
tion time, t̄ tr(0)5 t̄ tr(L)5 t̄ tr . It is given by
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



t̄ tr~0!5 t̄ tr~L !5 t̄ tr5

E
0

L F11k0E
0

x ebU~y!

D~y!
dyGF11kLe2bDUE

x

L ebU~y!

D~y!
dyGe2bU~x!dx

L
bU~y!

. ~3.7!
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k01kLe2bDU1k0kLe2bDUE
0

e

D~y!
dy

At the moment we have no simple qualitative explanation for the direction independence of the average translocation
the Appendix we derive a similar result for an asymmetric discrete two-site model of the channel. The analysis present
Appendix suggests that the direction independence of the average translocation time,t̄ tr(0)5 t̄ tr(L), is a consequence of
more general relation: namely, the direction independence of the probability density for the translocation time,w tr(tu0)
5w tr(tuL). We cannot prove this general relation for an arbitrary asymmetric potential and position-dependent d
coefficient.

In contrast to the average translocation time, the average return times are different and given by

t̄ r~0!5

E
0

L F11kLe2bDUE
x

L ebU~y!

D~y!
dyG2

e2bU~x!dx

F11kLe2bDUE
0

L ebU~y!

D~y!
dyGFk01kLe2bDU1k0kLe2bDUE

0

L ebU~y!

D~y!
dyG , ~3.8!

t̄ r~L !5

E
0

L F11k0E
0

L ebU~y!

D~y!
dyG2

e2bU~x!dx

F11k0E
0

L ebU~y!

D~y!
dyGFk01kLe2bDU1k0kLe2bDUE

0

L ebU~y!

D~y!
dyG . ~3.9!
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The average lifetimes in the channel for particles t
enter through the opposite ends can be written in terms of
conditional average lifetimes and the translocation and re
probabilities for particles that enter the channel atx050 and
x05L. These probabilities, denoted asPtr(0), Pr(0),
Ptr(L), and Pr(L), respectively, are related to the splittin
probabilities in Eq. ~2.6! by Ptr(0)5PL(0), Ptr(L)
5P0(L), Pr(0)5P0(0), and Pr(L)5PL(L). Using these
notations we can write@cf. Eq. ~2.11!#

t̄ ~0!5 t̄ r~0!Pr~0!1 t̄ tr Ptr~0!,
~3.10!

t̄ ~L !5 t̄ r~L !Pr~L !1 t̄ tr Ptr~L !.

The translocation and return probabilities are derived in R
6. Combining the expressions in Eqs.~3.7!–~3.9! with the
corresponding results from Ref. 6@or found from Eq.~3.6!#,
we obtain

t̄ ~0!5

E
0

L F11kLe2bDUE
x

L ebU~y!

D~y!
dyGe2bU~x!dx

k01kLe2bDU1k0kLe2bDUE
0

L ebU~y!

D~y!
dy

,

~3.11!

t̄ ~L !5

E
0

L F11k0E
0

x ebU~y!

D~y!
dyGe2bU~x!dx

k01kLe2bDU1k0kLe2bDUE
0

L ebU~y!

D~y!
dy

.

One can check that the weighted sum of these lifetimes
pends only onU(x) and does not depend onD(x), k0 , and
kL :
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k0 t̄ ~0!1kLe2bDU t̄ ~L !5E
0

L

e2bU~x!dx. ~3.12!

The average times in Eqs.~3.7!–~3.9! and~3.11! are the main
results of this paper. They are discussed in detail in the
lowing section.

IV. DISCUSSION

The general formulas for the average lifetimes deriv
above contain many parameters. To illustrate some feat
of the behavior of these functions we now discuss sev
cases in which the general formulas significantly simpl
and the number of parameters decreases. We consider a
metric case and assume that~a! U(x)5U(L2x), ~b! the
diffusion coefficient in the channel is a constant,D(x)
5const5Dch, and~c! the rate constantsk0 andkL are equal
and are given by10

k05kL5k5
4Db

pa
, ~4.1!

wherea is the channel radius andDb is the particle diffusion
constant in the bulk outside the membrane which in gen
may differ from Dch . This expression fork is derived and
tested against Brownian dynamics simulations in Ref.
According to assumption~a!, U(0)5U(L) and, hence,DU
50. In the symmetric case the two average return times
equal and will be denoted byt̄ r5 t̄ r(0)5 t̄ r(L). The two
average lifetimes are also equal and will be denoted bt̄

5 t̄ (0)5 t̄ (L).
The discussion is split into three pieces. First, we co

sider the case of no potential. Here the main focus is on
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dependence of the average lifetimes on the geometric pa
eters of the channel,a andL, and the diffusion constants i
the channel and in the bulk. In Sec. IV B we consider
case of a square-well potential that occupies the entire c
nel. This means that the particle undergoes isotropic di
sion everywhere except at the channel boundaries w
there is a finite bias that draws the particle into the chan
Such a potential is a caricature of the potential typical
many channels. A broad potential well is required beca
the translocation probability in the absence of the well
vanishingly small.6 In this subsection we study how the a
erage lifetimes depend on the well depth. Finally, in S
IV C we discuss the case of a square-well potential that
cupies only part of the channel. The main focus of this s
section is on the dependence of the lifetimes on the lengt
the well. Surprisingly, this dependence is nonmonotonic
the average translocation time.

A. No potential well

In the simplest case, whenU(x)50, we have

t̄ tr5t

11m1
m2

6

21m
, t̄ r5t

11m1
m2

3

~11m!~21m!
, ~4.2!

where

t5
L

k
5

paL

4Db
, m5

kL

Dch
5

L2

Dcht
5

4LDb

paDch
. ~4.3!

In the most interesting case of a long and narrow chan
(m@1) the conditional lifetimes in Eq.~4.2! take the form

t̄ tr.
tm

6
5

L2

6Dch
, t̄ r.

t

3
5

paL

12Db
. ~4.4!

As might be expected,t̄ tr is proportional to the ratio
L2/Dch . It is interesting thatt̄ r does not depend onDch and
depends only onDb . Another interesting feature oft̄ r is its
linear dependence on both the channel length and radiu

In the case of no potential the translocation and ret
probabilities are given by6

Ptr5
1

21m
, Pr5

11m

21m
. ~4.5!

The average lifetime in this channel is

t̄ 5 t̄ r Pr1 t̄ tr Ptr5
t

2
5

paL

8Db
. ~4.6!

It is interesting that, similar tot̄ r , t̄ depends only onDb and
not on Dch and is proportional to the channel length a
radius. It is worth mentioning that this average lifetime
different from the average lifetime of a particle uniform
distributed over the channel length, which is used to cha
terize thermal fluctuations of the number of particles in
channel.10 This time depends on bothDb and Dch and is
equal to (L2/12Dch)(113pDcha/2DbL).

It is informative to consider the ratio of the two terms o
the right-hand side of Eq.~4.6!:
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t̄ tr Ptr

t̄ r Pr

5

11m1
m2

6

11m1
m2

3

. ~4.7!

The ratio increases from 0.5 to unity asm decreases from
infinity to zero. Thus, although the timest̄ tr and t̄ r are quite
different for long channels,t̄ tr@ t̄ r , their contributions intot̄
are comparable:

t̄ r Pr5
2

3
t̄, t̄ tr Ptr5

1

3
t̄. ~4.8!

This happens because the large timet̄ tr is multiplied by the
small translocation probability while the return probability
close to unity.

B. Potential well occupies the entire channel

In this subsection, we consider a square-well poten
that occupies the entire channel

U~x!52U0H~x!H~L2x!, ~4.9!

whereU0 is the well depth,U0.0, andH(x) is the Heavi-
side step function. The conditional lifetimes for this case
given by

t̄ tr5tebU0

11me2bU01
m2

6
e22bU0

21me2bU0
~4.10!

and

t̄ r5tebU0

11me2bU01
m2

3
e22bU0

~11me2bU0!~21me2bU0!
. ~4.11!

For long and narrow channels (m@1) with deep wells that
satisfy

bU0@ ln m, ~4.12!

these times are equal to one another and proportiona
exp(bU0):

t̄ tr5 t̄ r5
t

2
ebU05

paL

8Db
ebU0, ~4.13!

as might be expected. Figure 2 shows howt̄ tr and t̄ r ap-
proach their limiting behavior in Eq.~4.13!. Relaxation to
quasiequilibrium in a deep potential well occurs much fas
than escape. This is why the lifetimes in Eq.~4.13! are inde-
pendent ofDch . They depend only onDb as the rate constan
k ~which determines the efficiency of the escape from
channel! is proportional toDb .

The translocation and return probabilities for the ca
when the well occupies the entire channel are given by6

Ptr5
1

21me2bU0
, Pr5

11me2bU0

21me2bU0
. ~4.14!

Using these probabilities and the conditional lifetimes
Eqs.~4.10! and ~4.11!, one can find the average lifetime
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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t̄ 5 t̄ r Pr1 t̄ tr Ptr5
1

2
tebU0. ~4.15!

The two terms of the sum are approximately equal for d
wells, whenbU0@ ln m. This happens becauset̄ r. t̄ tr and

FIG. 2. Dependencest̄ tr /t and t̄ r /t, the upper and lower solid curves
respectively, as functions of the well depth for the square-well poten

occupying the entire channel atm520. The timest̄ tr and t̄ r are given in
Eqs.~4.10! and~4.11!. The dashed curve shows the asymptotic behavio
the ratio that follows from Eq.~4.13!.
e

n
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p

Pr.Ptr.0.5 in this limiting case. The ratio of these tw
terms considered as a function of the well depth varies fr
0.5 for U050 to unity asbU0→`.

C. Potential well occupies part of the channel

In this subsection we consider a symmetric square
tential well of lengthl that occupies the central part of th
channel. In this case,

U~x!52U0HS x2
L2 l

2 DHS L1 l

2
2xD , ~4.16!

whereU0 is the well depth,U0.0. This potential is shown
in Fig. 3. The average lifetime in the channel for returni
particles is given by

l

f

FIG. 3. Square-well potential in Eq.~4.16!.
t̄ r5tebU0
Numr

@11m~12l1le2bU0!#@21m~12l1le2bU0!#
, ~4.17!
e

e
-

f
ana-

is
wherel5 l /L is the fraction of the channel occupied by th
well and

Numr5l1~12l!e2bU01m@l~12l!

1~122l12l2!e2bU01l~12l!e22bU0#

1
m2

12
@3l~12l!212~12l!~224l15l2!e2bU0

1l~9218l113l2!e22bU016l2~12l!e23bU0#.

~4.18!

The plots in Fig. 4 show the behavior oft̄ r as a function ofl
for bU051, 2, and 3 form520. As might be expected,t̄ r

monotonically grows asl increases.
In contrast, the average translocation time is a nonmo

tonic function ofl. This time is given by

t̄ tr5tebU0
Numtr

21m~12l1lebU0!
, ~4.19!

where
o-

Numtr5l1~12l!e2bU01m@l~12l!1

~122l12l2!e2bU01l~12l!e22bU0#

1
m2

12
@3l~12l!212~12l!~122l14l2!

3e2bU01l~326l15l2!e22bU0#. ~4.20!

The behavior oft̄ tr as a function ofl is shown in Fig. 5 for
bU051, 2, and 3 form520. One can check that in th
limiting case of long and narrow channel (m@1) with a deep
potential well (bU0@ ln m) the average translocation tim
has a maximum atl51/2, i.e., when the well occupies ex
actly one half of the channel,l 5L/2. The time at the maxi-
mum is given by

t̄ tr ul51/25
tm

16
ebU0. ~4.21!

The turnover behavior oft̄ tr considered as a function o
l seems rather counterintuitive and deserves some expl
tions. Thel dependence of the average translocation time
determined by a competition of two effects:~i! the increase
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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of the average time spent by the particle in the well withl
and ~ii ! the decrease in the probability for the particle th
has escaped from the well to come back. The first effec
more important at smalll and leads to an increase in th
average translocation time. The second effect starts to do
nate asl approaches unity, leading to a decrease in the
erage translocation time. Thus, whenl varies from zero to
unity, the average translocation time first grows and reac
a maximum and then decreases. This is a qualitative ex
nation of the turnover behavior oft̄ tr .

The translocation and return probabilities for the case
a square potential well that occupies the fractionl of the
channel are given by6

FIG. 4. Ratio oft̄ r in Eq. ~4.17! to its value atl50 given in Eq.~4.2! as a
function of the fraction of the channel occupied by the symmetric squ
potential well,l, for m520 and well depthbU051, 2, and 3~from bottom
to top!.

FIG. 5. Nonmonotonic dependence of the average translocation time o

fraction of the channel occupied by the well. The curves show the ratio ot̄ tr

in Eq. ~4.19! to its value atl50 given in Eq.~4.2! as a function ofl, for
m520 and well depthbU051, 2, and 3~from bottom to top!.
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Ptr5
1

21m~12l1le2bU0!
,

~4.22!

Pr5
11m~12l1le2bU0!

21m~12l1le2bU0!
.

Using these probabilities and the conditional average l
times in Eqs.~4.17! and ~4.19!, one can find the uncondi
tional average lifetime by

t̄ 5 t̄ r Pr1 t̄ tr Ptr5
t

2
~12l1lebU0!. ~4.23!

The final expression fort̄ @as well as the results in Eqs.~4.6!
and ~4.15!# can be easily obtained from the relation in E
~3.12!. The dependence of this time onl is presented in Fig.
6, which shows thatt̄ monotonically grows asl increases, as
one might expect on the basis of general intuitive ideas.

To test our theory we performed three-dimension
Brownian dynamics simulations for the channel with the
mensionless radiusa55.5 and lengthL5200. We takeDb

5Dch50.5 and the square-well potential that is symmet
about the channel center. Figures 7, 8, and 9 show the a
age translocation and return times as well as the ave
particle lifetime in the channel,t̄ tr , t̄ r , and t̄ , respectively,
as functions of the well depthbU0 for three values of well
length l 5120, 176, and 198. It is seen that theoretical p
dictions agree well with the simulation results.

V. CONCLUDING REMARKS

The main results of this paper are the expressions in E
~3.7!–~3.9! for the average conditional lifetimes of the pa
ticle in the channel, as well as in the expressions in
~3.11! for the total~unconditional! average lifetimes for par-
ticles that enter the channel from opposite sides. These
pressions show how the lifetimes depend on the partic
channel interaction, which is described in terms of t

e

he

FIG. 6. Ratio oft̄ in Eq. ~4.23! to its value atl50 given in Eq.~4.6! as a
function of l, for m520 and well depthbU051, 2, and 3~from bottom to
top!.
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potential of mean force,U(x), and the position-dependen
diffusion coefficient of the particle in the channel,Dch(x).

The average lifetimes are important for understand
channel functioning, especially in the case when partic
cannot pass each other, so that one particle blocks the c
nel for the passage of others. In the simplest model
blockage makes it impossible for another particle to enter
channel until the first particle escapes. The efficiency of
channel operation~the metabolite flux facilitated by the
channel! is determined by the interplay between the parti
lifetime in the channel and the time between successive
tempts to enter the channel made by particles in the bulk
the former time is much larger than the latter, most of
attempts are unsuccessful because the channel is blo
most of the time. In the opposite limiting case when t

FIG. 7. Average translocation timet̄ tr as a function of the well depth for
well length l 5120, 176, and 198~from top to bottom!. The curves are
drawn according to Eq.~4.19!.

FIG. 8. Average return timet̄ r as a function of the well depth for well lengt
l 5120, 176, and 198~from bottom to top!. The curves are drawn accordin
to Eq. ~4.17!. Note that the order of the curves is reversed compared to
in Fig. 7.
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particle lifetime in the channel is much smaller than the tim
between successive attempts, the channel is empty mo
the time. It is clear that an optimal regime for channel o
eration is realized when the two times are close to each ot

There is another important parameter that determines
efficiency of the channel operation: the particle translo
tion probability. In our previous study6 we have shown tha
this probability increases with the depth of the potential we
According to Eqs.~3.11! of the present paper, the averag
lifetime also increases with this parameter. Thus, when
well is deep enough so that the translocation probability
close to its maximum value 0.5, the particle lifetime in t
channel is large. We will address the question of optim
channel functioning in a forthcoming paper.

The theory developed above assumes that the cha
dynamics is much faster than that of the particle. In real
this is not necessarily the case. One can easily imagine
characteristic time scales associated with the particle
channel dynamics are comparable. If so, one has to treat
dynamics on an equal footing, which leads to a much m
complicated multidimensional problem. This general pro
lem reduces to our one-dimensional model by the adiab
elimination of fast variables, which is justified on conditio
that the channel dynamics are fast enough.

This paper deals with neutral solutes. A similar set
questions arises in connection with the ion passage thro
membrane channels.11 These questions were addressed in
cent papers12 where the Coulomb interaction of ions an
charges on the channel walls was treated in the framewor
the Poisson–Boltzmann approach. The analysis in Ref.
was based on the one-dimensional Fokker–Planck equa
in phase space. We believe that our approach, which ma
use of the diffusion equation, can be applied to ion perm
ation if the above-mentioned reduction to the on
dimensional description is justified.

at

FIG. 9. Average lifetimet̄ as a function of well depth for the same values
the well length as in Fig. 8. The curves are drawn according to Eq.~4.23!.
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APPENDIX: PROBABILITY DENSITY OF THE
TRANSLOCATION TIME FOR AN ASYMMETRIC TWO-
SITE CHANNEL

The kinetic scheme representing an asymmetric two-
channel is

←
k1 o f f

—
1

�
k2

k1

—
2

→
k2 o f f

, ~A1!

where the rate constantsk1 and k2 characterize transition
between the two sites of the channel, while the rate const
k1 o f f and k2 o f f characterize escape from the channel in
the bulk on the two sides of the membrane. Consider a
ticle that enters the channel from the left at timet50. The
propagator, which is the probability to find this particle at t
time t on sitei, Gi1(t), i 51,2, satisfies

]G11~ t !

]t
52~k1 o f f1k1!G11~ t !1k2G21~ t !,

~A2!
]G21~ t !

]t
5k1G11~ t !2~k2 o f f1k2!G21~ t !,

with the initial conditionG11(t)51, G21(t)50. Solving this
set, one can find that the Laplace transform ofG21(t) is
given by

Ĝ21~s!5
k1

~s1k1 o f f1k1!~s1k2 o f f1k2!2k1k2
. ~A3!

Then one can find the Laplace transform of the transloca
flux:

f̂ tr~su1!5k2 o f fĜ21~s!. ~A4!

The particle translocation probability is

Ptr~1!5 f̂ tr~0u1!5k2 o f fĜ21~0!. ~A5!

The Laplace transform of the probability density of the tra
location time is given by
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ŵ tr~su1!5
f̂ tr~su1!

Ptr~1!
5

Ĝ21~s!

Ĝ21~0!

5
~k1 o f f1k1!~k2 o f f1k2!2k1k21

~s1k1 o f f1k1!~s1k2 o f f1k2!2k1k2

. ~A6!

The average translocation time for the particle that sta
from site 1 is

t̄ tr~1!52
dŵ tr~su1!

ds U
s50

5
k1 o f f1k11k2 o f f1k2

~k1 o f f1k1!~k2 o f f1k2!2k1k2
. ~A7!

The expression in Eq.~A6! shows that the probability den
sity for the translocation time is direction independe
w tr(tu1)5w tr(tu2). As a consequence, the average trans
cation time does not depend on the direction of the tran
cation also,t̄ tr(1)5 t̄ tr(2).

Similar but more cumbersome calculations for an asy
metric three-site channel show that the probability density
the translocation time is direction independent for this ch
nel also.
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